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Solidification of metallic aerosol droplets from 
floating rafts: a test of the spiral growth 
mechanism for Cd and Zn 

E. R. BUCKLE,  P. T S A K I R O P O U L O S  
Condensation Laboratory, Department of Metallurgy, The University, Sheffield, UK 

The strain energy developed by surface stresses in a crystalline raft of basal orientation 
floating on a droplet of melt is calculated and compared to the strain energy of a screw 
dislocation situated on the raft axis. The suggestion that a dislocation is generated at a 
characteristic value of the raft/drop radius ratio is tested by making the comparison for 
arbitrary values of raft aspect ratio and Burgers vector. When b = c, the lattice parameter 
of the hexagonal crystal, the energies are equal at a combination of aspect ratio and 
radius ratio that fits experiment. The apparent height of the helical growth step greatly 
exceeds this value of b and remains to be explained, but the results confirm that a high 
growth rate anisotropy is required initially to produce the dislocation. 

1. Introduction 
The solidification of molten aerosol particles of 
Zn or Cd takes place by the nucleation and growth 
of floating basal rafts [1]. Growth occurs in two 
stages. The raft first spreads laterally over the 
liquid surface while remaining relatively thin. In 
the second stage there is rapid thickening. This 
involves the advance of the self-perpetuating step 
formed by a screw dislocation emergent at the 
solid-liquid interface. It was suggested [1] that 
the dislocation is the result of strain imposed by 
the surface forces, and the present paper is an 
attempt to verify this by calculating the raft 
dimensions at which the strain energy reaches 
the necessary level and comparing them to the 
experimental values. 

2. The source of elastic strain energy 
First the strain energy is evaluated in a flat, 
circular raft of radius a held on an unsupported 
liquid droplet of radius R (and of the same com- 
position) by the surface forces acting at the 
edge and on the two basal faces. The system of 
drop plus raft is taken to be mechanically iso- 
lated and at constant temperature; the raft centre 
occupying a position fixed with respect to the 
drop centre. The raft is assumed to grow while 
held in the liquid surface without experiencing 
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any forces, including thermal stresses, as the 
result of the exchange of internal or kinetic 
energy between the liquid and its surroundings. 

If gravitation and buoyancy forces are also 
neglected, the forces on the floating raft may be 
depicted as in Fig. 1. The vertical load intensity 
qv is an evenly distributed stress equal to the 
excess pressure. In the absence of a raft this 
would be given by (2T/R),  where 7 is the liquid 
surface tension. The basal surfaces of the raft 
introduce two new interfaces, and hydrostatic 
equilibrium requires the drop and the raft to 
deform so as to preserve a uniform pressure drop. 

To avoid these complications and the related 
problem of the contact angle, it is assumed that 
qv = 27/R holds to sufficient accuracy and that 
the curvature of the liquid remains spherical up 
to the edge of the raft (Fig. lc). The radial tension 
at the raft perimeter is represented by a load of 
intensity qh, evenly distributed over the thickness 
2c. Resolving ~, into vertical and horizontal com- 
ponents, 3'v and Th, as in Fig. lc, we obtain for the 
equilibrium of vertical forces on the perimeter 

2~aTv = ~ra2qv, (1) 

whence 
Tv = aqv/2 (2) 

and 
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Figure /(a) Loaded plate equivalent of floating raft, (b) 
raft dimensions and co-ordinate system (0 not shown) 
and (c) raft-drop geometry. 

Defining 

then 

~'h : ~ ' v ( a / R )  [1 - (a/R)~]~ ( 3 )  

: (qvR/2) [1 -- (a/R)2] ~ . 

The distributed tensile load, acting in the direction 
of 7h, has intensity 

qh = 7h/2c (4) 

= (q~R/4c) [1 - -  (a/R)2] ~ . 

y = a i r  (5) 

qh = (q~R/4c)(1 _y2)~  (6) 

is obtained. 
The quantity y,  the raft/drop radius ratio, has 

been found experimentally to show a charac- 
teristic value, which will be denoted y* =a*/R,  
whenever the raft has grown to "maturity" and 
the dislocation mechanism of solidification has 
ensued. The value of y* is 0.55 for Zn and 0.53 
for Cd [2]. 

3. Elastic strain energy of a dislocation-free 
floating raft 

The cylindrical polar co-ordinates r, 0, z and origin 
at the raft centre, where r is the length of the 
radius vector in the horizontal mid-plane and the 
polar axis z coincides with the raft axis (Fig. lb) 
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were chosen. Although for Zn and Cd the raft is 
isotropic only in the basal plane [3], it is supposed 
that along with the usual thin-plate simplifications 
[4, 5],  the problem may be treated as one of the 
deformation of an isotropic plate freely supported 
under the perimeter and bearing a vertical load 
uniformly distributed over the surface on one side, 
and a radial load uniformly distributed over the 
thickness all round the perimeter (Fig. l a). It is 
also assumed that a plane stress field results from 
the radial load that is independent of the vertical 
load [6], and that the total strain energy density 
Vo may be obtained by separate evaluation and 
summation of the vertical and horizontal contri- 
butions Vov and Voh , respectively, i.e. 

V0 = V0v + Voh. (7) 

The total strain energy V for a raft of thickness 2e 
and radius a is then 

V =  fee /2~ f /  VordrdOdz. (8) 

The energy density for vertical loading reduces by 
the vanishing of the shear stress components fro 
and rOz to 

2Vov = (oN + o0 + oz)2/E 

- (oo oz + o~o~ + o~ao - ?rz)/C, 

( 9 )  

where the o are the normal stresses and G is the 
modulus of rigidity. For horizontal loading (plane 
stress) oz and r~z also vanish to give 

2Vola = (Or + OO)2[E-- oro0/G. (10) 

The following are the expressions for the stress 
components under vertical loading [4, 5 ]: 

o~/qv = (z/c)3(2 + v)/8 --3(3 + p)rZz/32e 3 

--3(2 + v)z/40c + 3(3 + u)a2z/32e3; 

(11) 

oo/qv = 3(3 + v)aZz/32c ~ -- 3(I + 3v)r2z/32c 3 

+ (2 + v)z/Sc 3 -- 3(2 + v)z/40c; (12) 

az/qv = 3z/4c--z3/4c 3 -- 1/2; (13) 

rrz/qv = -- 3(c 2 -- z2)r/803. (14) 

Under horizontal loading, in view of the isotropy, 

oN = o0 = qh (15) 

may be written. 



TAB LE I Data for calculation of V, [8-11] 

Metal T(K)* E(GPa) G (GPa) "r(N m-l) % 

Cd 573 30.4 11.7 0.59 
Zn 673 54.9 22.0 0.77 

*Solid at melting point - 20 K. 
tLiquid at melting point. 

The so-called distortional strain energy densities 
V~ are obtained by subtraction of the purely 
hydrostatic contributions from the complete 
expressions [7] 

V;v = Vov -- (o, + o0 + Oz)~(1 -- 2u)/6E 

and (16) 

V;h = Voh - - ( o r +  o0)2(1 --2v)/6E, (17) 

and the total distortional energy density V~ = 
V~v + V~h integrates to yield the distortional 
energy 

V' =fc_e f2orr~o V;rdrdOdz. ( t8)  

Defining the raft aspect ratio by 

x = a/c (19) 

and carrying out the integrations the following 
expression is obtained for the total strain energy 

V/R = klxay a -- k2xy 3 + k3y3/x + kaxy, 

(20) 
where y is the radius ratio defined in Equation 5. 
The values of  the coefficients k obtained for Cd and 
Zn with the data of  Table I are given in Table II. 

An equation of similar form results for the 
distortional strain energy in the raft 

v'/R < x3y 3 , 3 = --k2xy  +k'ay3/x+k'4xy.  (21) 

The values of the k '  for the conditions of Table I 
are also given in Table II. 

4. Energy of the axial screw dislocation 
It was postulated in the previous paper [1 ] that 
as the raft expands elastic strain builds up to a 
level at which one or more screw dislocations 
with axes parallel to the raft axis are formed. It 
is found from the above expression for Vo that 

strain concentrates in the vicinity of  the raft axis, 
and is highest at the extremities (z =-+ c). The 
stress due to a screw dislocation is concentrated 
near the dislocation line, in this case also the raft 
axis. It is now assumed without consideration of 
the mechanism by which the stress field relaxes, 
that a sufficient criterion for spiral growth to 
commence is that the total strain energy rises to 
equal that of a single screw dislocation positioned 
on the axis and terminating on the basal faces. 

The strain energy of an axial dislocation in a 
thin, elastically isotropic disc of infinite radius but 
finite thickness is given [12] by 

V d = (2cGb2/47r) In (c/2.24ri), (22) 

where r i is the radius of a stress-free hole at the 
core and b is the modulus of the Burgers vector. 
The expression is probably sufficiently accurate 
for our purpose when restricted to discs with 
aspect ratios above about 5 [13]. It is convenient 
to re-write the expression for V a in terms o fx  and 
y to give 

Va/R = (Gb2/2rr) (y/x)  [In (y/x)  

+ In (R/ri) -- 0.8061. (23) 

A value of 1 nm is taken for r i [14], and since R 
varies typically from 1 to 50 ~m for the spheres in 
our aerosols an average value of 8.86 for In (R/ri) 
is used. The unit cell height c or an integral 
multiple of it is approprite for b. 

5. Results of calculations: raft thickness 
and helix step height 

We now look for equality in the values of V/R and 
Vd/R for any size of drop, assuming first that the 
Burgers vector has the minimum value b = c (data 
from [15]). Fig. 2 gives the results calculated for 
Cd at 573 K, at which temperature the molten 
metal is supercooled by 20 K. 

The curves for V and Vd swing in opposite 
directions as parameter x is varied. For a thick raft 
(small x) there is no intersection at a meaningful 
raft radius (y ~< 1), so that there is never sufficient 
energy for the formation of a screw dislocation. 
Although the calculation of both V and Va 
assumes the raft to be thin this result is to be 

T A B L E I I Coefficients (pN) for the strain energy equations 

Metal T(K) k I k', k 2 
m 

Cd 573 2.95 1.93 5.25 
Zn 673 3.08 1.94 13.26 

k; 

3.25 
10.88 

k 3 

53.88 
49.33 

k; 

46.70 
41.00 

k 4 

12.60 
12.79 

k; 
7.73 
7.24 
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Figure 2 V/R (full lines) and 
Vd/R (dashed lines) against 
radius ratio y for Cd at 573 K, 
with aspect ratio x as parameter. 
The full circles lie on the locus 
of points (V*/R, x*, y*) for a 
mature raft. Inset: Aspect ratio 
against radius ratio for mature 
Cd rafts at 573 K. 
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expected intuitively. Intersection becomes feasible 
at about x = 6. During formation a raft spreads 
faster than it thickens [1]; in other words, it 
increases simultaneously in x and y (assuming R is 
constant). Its representative point on the graph of 
V against y will consequently move up to meet 
the locus of intersections V = Va, and this will 
define a set of co-ordinates V* ,y*,  x* which mark 
the attainment of maturity and the generation 
of a screw dislocation. 

According to Fig. 2, a Cd raft of maximum 
radius ratio (y* = 0.53) should possess an aspect 
ratio 7 < x * < 8 .  A more accurate reading is 
obtained from the inset, which gives x* = 7.5. A 
similar value is obtained for Zn at 673 K by taking 
y * =  0.55. When the calculations are repeated 
with V' instead of V the values of x* are slightly 
higher. 

These predictions of the aspect ratio of  the 
mature basal raft are in harmony with rough 
estimates made on micrographs of solid aerosol 
particles [1]. The thickness of the mature raft 
itself cannot be measured on the solidified droplet, 
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and estimates have had to be made on immature 
rafts. In addition to our evidence from aerosol 
particles, the sectioned Zn particle of White [16] 
indicates x* ~ 5, although Cahn, HiUig and Sears 
[17] conciuded that the aspect ratio of a floating 
raft was about 30. 

The larger aerosol droplets which are con- 
densed at background temperatures approaching 
the melting point were found to have y* values 
of over 0.6 [2]. Other things being equal, this 
would suggest a correspondingly smaller x*, and 
although there are" no data to confirm this a 
lower extent of growth rate anisotropy is to be 
expected of particles solidifying at higher tempera- 
tures. There is, however, also a possibility of inter- 
ference at these higher background temperatures 
by vapour growth, evaporation or surface diffusion, 
any of which might effect the profile of the 
particle after solidification and so vitiate the 
measurement of y*.  

Another surface feature of the solidified sphere 
that might afford useful data for calculations is 
the helix step height (HSH). This is the distance 



by which the solidification front advances into 
the melt during one complete turn o f  the growth 
spiral, and is equal to the magnitude b of  the 
Burgers vector o f  the screw dislocation or to an 
integral multiple o f  it. The fine rings observed on 
Cd spheres were attributed to the turns of  the 
solidification helix [1]. A very crude estimate of  
the step height made by measuring the ring spacing 
in the micrograph of  Buckle etal .  [1] is 70nm.  
Using this for b and y * =  0.53 again, x * =  76. 
Although a thinner raft must follow from a larger 
b the values of  both b and x* are unduly large, 
and in the light of  the other evidence on x* it 
appears that the observed HSH is not simply 
related to b. 

For convenience of  calculation the raft has 
been taken as elastically isotropic, so that the 
strained condition of  the raft depends upon its 
aspect ratio. This, in turn, depends on the occur- 
rence of  unequal growth rates in different crystal- 
lographic directions. Anisotropy of  growth rate, 

therefore, is the factor which in this theoretical 
treatment is vital to the onset of  the helical 
growth mechanism. Although different growth 
rates may be intrinsic to the different orientations 
of  surface planes we have neglected to take into 
account the possible part played by heat transfer. 
While it is clear that the expansion stage of  raft 
growth is always slow relative to the eventual 
rate of  thickening, growing rafts have been seen 
to move about on the drop surface [17, 18]. 
Such motion is suggestive of thermal gradients 
and the possible existence of  thermal stress 
which play an essential role in the re-organization 
of  the stress field and the creation of  the dis- 
location. 
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